Approximating non-metrical Minkowski distances in 2D
نویسندگان
چکیده
In this paper we discuss a possible discrete approximation of non-metrical Minkowski distances. The existing approaches for Minkowski metrics considering distance functions based on local neighborhoods are not suitable for this task in their present form. We can overcome this difficulty with considering the minimum of such distance functions. In this way we can take full advantage of the former theoretical and applied results. We consider several possibilities to measure the error of approximation and propose corresponding distance functions for optimal approximation. A fast chamfering algorithm is also provided to generate the approximate distance values for applications in digital domains.
منابع مشابه
Discrete approximations of non-metrical distances
In this paper we will introduce a new method for approximating non-metrical Minkowski distances. The existing approaches for Minkowski metrics considering distance functions based on local neighborhoods are not suitable for this task in their present form. In our approach we can overcome this difficulty with considering the minimum of such distance functions. In this way we can take full advant...
متن کاملMetric and non-metric distances on Z by generalized neighbourhood sequences
The neighbourhood sequences have got a very important role in the digital image processing. In this paper we give some new results from this area. Using neighbourhood sequences on the n dimensional digital spaces, we give a formula to compute distances of any pairs of points. By practical reasons we underline the special cases of 2 and 3 dimensional digital spaces. It is known that there are no...
متن کاملApproximating Multidimensional Subset Sum and Minkowski Decomposition of Polygons
We consider the approximation of two NP-hard problems: Minkowski Decomposition (MinkDecomp) of integral lattice polygons, and the related Multidimensional Subset Sum (kD-SS). We prove, through a gap-preserving reduction, that, for general dimension k, kD-SS does not have an FPTAS. For 2D-SS, we present an O(n/ ) approximation algorithm, where n is the set cardinality and bounds the approximatio...
متن کاملTranslation Surfaces of the Third Fundamental Form in Lorentz-Minkowski Space
In this paper we study translation surfaces with the non-degenerate third fundamental form in Lorentz- Minkowski space $mathbb{L}^{3}$. As a result, we classify translation surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form $III$ on the surface.
متن کاملOn approximating Euclidean metrics by digital distances in 2D and 3D
In this paper a geometric approach is suggested to ®nd the closest approximation to Euclidean metric based on geometric measures of the digital circles in 2D and the digital spheres in 3D for the generalized octagonal distances. First we show that the vertices of the digital circles (spheres) for octagonal distances can be suitably approximated as a function of the number of neighborhood types ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 29 شماره
صفحات -
تاریخ انتشار 2008